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Abstract

In this paper, we present a computation technique for the direct numerical simulation of freely moving rigid bodies

in fluids. We solve three-dimensional laminar flow problems using a control volume approach. The key feature of this

approach is that the computational overhead (relative to a pure fluid solver) to solve for the motion of rigid particle is

very small. The formulation is convenient for handling irregular geometries. We present results for the sedimentation of

particles of different shapes. Convergence tests are presented to assess the order of accuracy of the numerical scheme.

Various test cases are considered and the numerical results are compared with experimental values to validate the code.

Due to the ability to perform fast computations, this method has been used for animations and its application to the

direct numerical simulation of turbulent particulate flows merits investigation. The technique is not restricted to any

constitutive model of the suspending fluid. Hence, it may potentially be used in Large Eddy Simulations (LES) or Rey-

nolds Averaged Navier–Stokes (RANS) type simulations.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulation techniques for solid–liquid flows, which do not use any model for fluid–particle

interaction, have been developed over the past 12 years. In these methods, the fluid flow is governed by
the continuity and momentum equations, whereas the particles are governed by the equation of motion

for rigid body. The flow field around each individual particle is resolved. The hydrodynamic force between

the particles and the fluid is obtained from the solution and is not modeled by any drag law. These
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simulations referred to as direct numerical simulation (DNS) of solid–liquid flows, can be applied in numer-

ous settings; e.g., sedimenting and fluidized suspensions, lubricated transport, hydraulic fracturing of res-

ervoirs, slurries, understanding particle–turbulence interaction, etc.

Hu and co-workers [11–13] developed a finite-element method based on unstructured grids to simu-

late the motion of large numbers of rigid particles in two and three dimensions in Newtonian and vis-
coelastic fluids. This approach is based on an arbitrary-Lagrangian–Eulerian (ALE) technique that uses

a moving mesh scheme to handle the time-dependent fluid domain. A new mesh is generated when the

old one becomes too distorted, and the flow field is projected on to the new mesh. A combined fluid–

particle weak formulation is used, where the hydrodynamic forces and torques on the particle are not

computed explicitly. Another numerical scheme based on the moving mesh technique was developed by

Johnson and Tezduyar [14]. They used a space time finite element formulation and a fully explicit

scheme in which the forces and torques on the particles were calculated explicitly to solve the equations

of rigid motion.
Glowinski et al. [9] presented a distributed Lagrange-multiplier/fictitious-domain (DLM) method for the

direct numerical simulation of the motion of many rigid particles in Newtonian fluids. Their finite element

formulation permits the use of a fixed structured grid. This eliminates the need for remeshing the domain –

a necessity in the unstructured grid-based methods. Structured grids also allow the use of fast and efficient

solvers. In the DLM method, the entire fluid–particle domain is assumed to be a fluid and the flow in the

particle domain is constrained to be a rigid-body motion by using a rigidity constraint. This leads to a La-

grange multiplier field in the particle domain. The constraint of rigid body motion is represented by

u = U + x · r, where u is the velocity of the fluid at a point inside the particle domain, U and x are the
translational and angular velocities of the particle, respectively, and r is the position vector of the point with

respect to the particle centroid. The fluid–particle motion is treated implicitly using a combined weak for-

mulation in which the mutual forces cancel.

A new DLM formulation for particulate flows was later presented by Patankar et al. [21]. In their ap-

proach, the rigid motion is imposed by constraining the deformation-rate tensor within the particle domain

to be zero. This eliminates U and x as variables from the coupled system of equations – thus enabling sim-

ulations of irregular shaped bodies without additional complexity. This formulation recognizes that the

rigidity constraint results in a stress field inside a rigid solid just as there is pressure in an incompressible
fluid. The DLM formulation of Glowinski et al. [9] and Patankar et al. [21] were implemented by using

a Marchuk–Yanenko fractional-step scheme for time discretization. A finite-element method was used.

The ALE and DLM formulations, discussed above, have been implemented for laminar flow conditions.

Although the DLM approach has been successfully used for computations with up to 1204 spheres in three

dimensions – Pan et al. [19] – further speed-up of the solution procedure is desirable. This is critical for

DNS of turbulent particulate flows or for performing simulations with thousands of particles where fast

computations are essential for the problems to be computationally feasible. With these objectives in con-

sideration, Patankar [20] presented an adapted version of his earlier DLM-based formulation – Patankar
et al. [21] – for the fast computation of rigid particulate flows. The key issue addressed in the formulation

was the fast implementation of the rigidity constraint, irrespective of the type of equations used to describe

the fluid. The formulation eliminated the need for an iterative procedure to solve the rigid body projection

step thereby allowing faster computations for particulate flows.

In this paper, we have implemented the formulation developed by Patankar [20] for the case of three-

dimensional particles using a control volume approach. Our objective is to demonstrate the effectiveness

of the approach in handling three-dimensional regular and irregular shaped particles without significant

computational overhead. We report convergence tests to check the order of accuracy of the scheme. A fixed
structured grid is used in both the fluid and the particle domains. The mathematical formulation for the

problem is laid down in Section 2. The computational scheme is outlined in Section 3. The numerical imple-

mentation is outlined in Section 4. Section 5 describes the results obtained and the validation.
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2. Mathematical formulation

Let X be the computational domain which includes both the fluid and the particle domain. Let P(t) be

the particle domain. Let the fluid boundary not shared with the particle be denoted by C. We will consider a

Dirichlet boundary condition on C. At times we will assume a single particle in the domain for the simplic-
ity of exposition. The body force will also be assumed to be constant so that there is no net torque acting on

the particle. The governing equations for fluid motion are given by:
qf

ou

ot
þ u � rð Þu

� �
¼ r � rþ qfg in X n P ðtÞ; ð1Þ

r � u ¼ 0 in X n PðtÞ; ð2Þ

u ¼ uCðtÞ on C; ð3Þ

u ¼ ui on oP ðtÞ; ð4aÞ

r � n ¼ t on oP ðtÞ; ð4bÞ

ujt¼0 ¼ u0ðxÞ in X n P ð0Þ; ð5Þ
where qf is the fluid density, u is the fluid velocity, g is the acceleration due to gravity, n is the outward nor-

mal on the particle surface, ui is the velocity at fluid–particle interface oP(t), r is the stress tensor and t is the

traction vector on the particle surface. The initial velocity u0 should satisfy (2). The boundary velocity, uC,

in (3) should satisfy the compatibility condition due to (2). For an incompressible fluid the divergence-free

constraint (2) gives rise to pressure in the fluid. The stress tensor is then given by:
r ¼ �pIþ s; ð6Þ
where I is the identity tensor, p is the pressure and s is the extra-stress tensor given by,
s ¼ l ruþ ruð ÞT
h i

; ð7Þ
for a Newtonian fluid, where l is the viscosity of the fluid.

Particle motion can be represented in terms of translational and angular velocities using Newton�s sec-
ond law. In the DLM formulation the particle is treated as a fluid that is subjected to an additional rigidity

constraint. The governing equations for the particle motion are given by [21]:
qs

ou

ot
þ u � rð Þu

� �
¼ r � rþ qsg in P ðtÞ; ð8Þ

r � u ¼ 0 in P tð Þ; ð9Þ

D u½ � ¼ 1
2
ruþruT
� �

¼ 0 in P ðtÞ; ð10Þ

u ¼ ui on oP ðtÞ; ð11aÞ

r � n ¼ t on oP ðtÞ; ð11bÞ

ujt¼0 ¼ u0ðxÞ in Pð0Þ; ð12Þ
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where qs is the particle density. The initial velocity u0 should satisfy (10). The rigidity constraint (10) en-

sures that the velocity field is divergence-free. Hence (9) is a redundant equation but is retained in order

to facilitate numerical implementation [21]. As noted earlier the incompressibility constraint (Eq. (9)),

which is a scalar constraint; gives rise to a scalar field (pressure p). Similarly the rigidity constraint

(Eq. (10)), which is a tensor constraint; gives rise to a tensor field (stress L) in the particle domain. L
is a symmetric second-order tensor. Variational analysis of the above equations shows that the pressure

p and stress L are the distributed Lagrange multipliers due to the divergence-free and rigidity constraints,

respectively [21]. L is an additional stress field required inside the particle domain to maintain the rigid-

body motion. The Lagrange multiplier stress L has six scalar variables in a three-dimensional case. This

is because Eq. (10) represents six scalar constraint equations at a point. A reformulation of Eq. (10) can

reduce the number of Lagrange multiplier variables to three. The rigidity constraint can be implemented

by imposing [21]:
r � D u½ �ð Þ ¼ 0 in P ðtÞ; ð13Þ

D u½ � � n ¼ 0 on oP ðtÞ; ð14Þ
where (13) and (14) represent three scalar constraint equations at a point. As a result L is no longer the

Lagrange multiplier itself. It remains the stress field inside the particle due to the rigidity constraint. It

can be represented in terms of a Lagrange multiplier k by [21]:
L ¼ D k½ �; ð15Þ
where k is a vector with three scalar components in a three-dimensional case. Hence, the stress inside the

particle is given by [21]:
r ¼ �pIþD½k� þ s: ð16Þ
sis zero in the particle domain due to the rigidity constraint (Eqs. (13) and (14)). Nevertheless, the term is

retained in the particle domain to facilitate the solution procedure [21].

Patankar et al. [21] solved the above fluid–particle equations using a finite element method. Patankar [20]

presented an adapted version of this formulation thus allowing for fast computation of rigid particulate

flows.
3. Computational algorithm

We present the computational algorithm based on the formulation by Patankar [20]. Assume a Newto-

nian fluid with constant viscosity l. The momentum equation applicable in the entire domain can be written

as:
ðqfð1� HÞ þ HqsÞ
ou

ot
þ u � rð Þu

� �
¼ �rp þ lr2uþ ðqfð1� HÞ þ HqsÞgþ f in X; ð17Þ
where f is the additional term due to the rigidity constraint in Eqs. (13) and (14) in the particle domain.

Note that f = $ Æ D[k] according to Eqs. (8) and (16). The continuity equation applicable in the entire do-

main is given by:
oðqfð1� HÞ þ HqsÞ
ot

þr � ½ðqfð1� HÞ þ HqsÞu� ¼ 0 in X: ð18Þ
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In Eqs. (17) and (18), H is a step function given by:
H ¼ 0 in X=P ðtÞ;
1 in P ðtÞ:

����� ð19Þ
H moves with the particle, therefore,
DH
Dt

¼ 0 on oP ðtÞ; ð20Þ
where D/Dt is the material derivative. The continuity Eq. (18) combined with the definition of H (Eqs. (19)

and (20)) gives a divergence free velocity field in the entire domain. Also Eq. (17) reduces to Eq. (1) in the

fluid domain and Eq. (8) in the particle domain.

The governing equations can be solved by the following two fractional time steps [20]:

(1) Solve for û and p̂ satisfying the following equations in the entire domain:
qf 1� Hð Þ þ Hqsð Þ û�un

Dt þ û � rð Þû
� �

¼ �rp̂ þ lr2ûþ qf 1� Hð Þ þ Hqsð Þg;
r � û ¼ 0:

)
ð21Þ
Set unþ1 ¼ û and pnþ1 ¼ p̂ in the fluid domain. Note that f = 0 everywhere in this step.

(2) Solve for un+1 in the particle domain by projecting û on to a rigid body motion. To do so, in the particle

domain, we have
qs

unþ1 � û

Dt

� �
¼ f: ð22Þ
To solve for un+1 in step 2 one requires knowledge of f. An equation for f can be obtained by using

Eqs. (13) and (14) [20]:
r � D unþ1½ �ð Þ ¼ r � D ûþ fDt
qs

h i� �
¼ 0;

D unþ1½ � � n ¼ D ûþ fDt
qs

h i
� n ¼ 0:

9>=
>; ð23Þ
The above equation implies that ûþ ðfDt=qsÞ is a rigid body motion, but it gives no information about

what this motion should be. In fact, this rigid motion is the solution that we are looking for, because

ûþ ðfDt=qsÞ ¼ unþ1 from Eq. (22).

Patankar [20] argued the rigid body motion can be obtained by imposing an additional condition

that, in the projection step, the total linear and angular momenta in the individual particle domain

should be conserved. The following procedure can be used to get the required solution.
(i) Split û as: û ¼ ur þ u0, where ur
ur ¼ Uþ x� r

MU ¼
R
P qsû dx and Ipx ¼

R
p r� qsû dx

)
; ð24Þ
where M is the mass of the particle and Ip is the moment of inertia of the particle. This computational

step is cheap since it is merely an addition (integration).

(ii) Since the linear and the angular momenta should be conserved in the projection step, set un+1 = ur
in the particle domain. This is the required solution. Note that f = �(qsu 0)/Dt. The velocity is cor-

rected in the particle domain (and the smeared interface). The influence of this correction is not

propagated by diffusion into the fluid in this fractional step. First, we note that there is no sharp
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discontinuity of velocity in the domain; rather the velocity correction is smeared on the length

scale of the grid size. Second, the influence of the velocity correction in the particle domain does

propagate by diffusion into the fluid during the computation of the first fractional step of the next

time step. Third, the combination of the two fractional steps, i.e., the net scheme, is first-order

[9,10] also to be discussed below. Smaller time steps are preferable – as is usually recommended
for first-order schemes.

The key advantage of the above formulation is that the projection step only involves integrations in the

particle domain with no iterations; hence, it is computationally cheap.

Some remarks on the uniqueness and similarity of this approach compared to the previous DLM formu-

lations and implementations are in order. In the above approach, U and x are not implicit variables in the

coupled system of equations. This is unlike the formulation by Glowinski et al. [9] where additional equa-

tions of motion for U and x are solved. For bodies with irregular shapes, the angular velocity equation is
non-linear. The method in this paper, where additional angular velocity equations are not required, can be

effective to simulate the motion of irregular shaped bodies without additional complexity.

The operator splitting scheme used above is like the Marchuk–Yanenko scheme used in the previous

DLM implementations [9,10,21]. Here we use the control volume discretization while previous implemen-

tations were finite element based. Eq. (24) is useful to extend the DLM approach to a control volume dis-

cretization. Incorporation of a rigid particle solver in the conventional control volume based conservative

schemes for the solution of Navier–Stokes equations, therefore, becomes straightforward.

Glowinski and co-workers [9,10] discussed different operator splitting schemes of the Marchuk–Yanenko
type, primarily depending on how the viscous term is split. One version they considered is equivalent to

keeping part of the viscous term in fractional step one (a modified Eq. (21)) and the other part in fractional

step two (a modified Eq. (22)). In this version the rigid motion projection is done coupled with the diffusion

equation in the entire domain. The computational cost of this approach, in our earlier implementations,

was consequently larger; typically taking up to 30% of the total computational time.

The other version, used widely by e.g. [9,10,21], is equivalent to keeping the entire viscous term in the

first fractional step. The rigid motion projection step is then similar to Eq. (22). As such, like the present

scheme, the rigid motion projection gives velocity correction in the particle domain and near the smeared
interface only. Thus, this aspect is also applicable to the earlier DLM implementations. As discussed above

the effect of this correction diffuses into the fluid in the next fractional step. That the net scheme is first-

order has been discussed by [9,10]. The same conclusions will apply to the formulation in this work. The

numerical results, to be presented below, confirm that our scheme is first-order.

In earlier work, the rigid body projection step similar to Eq. (22) was implemented by a variational for-

mulation (instead of Eq. (24)) that typically required 70–100 iterations (e.g. [9,10,21]). Our previous imple-

mentations of this approach usually took 5–10% computational time. In this work, the rigid motion

projection is based on Eq. (24) above, where no iterations are necessary. The typical time spent in our
implementations using Eq. (24) is less than 1% for all the cases presented in this paper thus speeding up

the particle solver.

Dong et al. [5] compared the performance of their spectral DLM approach with the force-coupling

method (FCM) by Maxey and Patel [17]. The FCM method is based on representing the particles by

low-order force multipoles distributed over a finite volume. Dong et al. [5] reported that FCM is compu-

tationally cheaper than their DLM approach. The computational cost of their DLM approach was more in

part because of the iterations involved in the rigid motion projection that was implicitly coupled with the

diffusion term in the entire domain (they had the diffusion term in the particle projection step). In compar-
ison, the cost of the fractional time stepping scheme such as that in this and in earlier works [9,10,21] is less.

This cost reduction is similar to that obtained by using e.g. a Chorin type pressure-based fractional time

stepping scheme instead of a fully implicit scheme for the solution of Navier–Stokes equations.
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The method to impose the rigidity constraint presented here (without additional equations of motion for

U and x), lays a theoretical framework that is similar to the first-order Chorin [3] type schemes for the

incompressibility constraint. Even with a simple projection method represented by Eqs. (22)–(24), a sec-

ond-order scheme for the rigidity constraint can be envisaged analogous to the second-order pressure cor-

rection based fractional step schemes [16] for the incompressibility constraint. This is relegated to future
work.

The formulation above follows that presented by Patankar [20]. Independently, Glowinski and co-

workers [10,8] have presented and discussed a rigid motion projection similar to Eq. (24) but including

coupled variables U and x and a density difference dependent term. They note that it works well for neu-

trally buoyant particles (i.e., fluid and particle densities are equal); otherwise the variational formulation

based projection (instead of a scheme like in Eq. (24)) works better. There are at least two issues to con-

sider here:

1. The variational formulation, although slower in terms of computational speed, is an error minimizing

projection and thus may give better results, in general, than using Eq. (24). This issue can be minimized

by improving the order of accuracy of the current time stepping scheme by drawing analogy with the

Chorin type schemes. This is a topic of our continuing work.

2. We solve Eq. (21) by accounting for the density variation. That leads to a projection step (Eq. (22)) that

does not involve a term dependent on the density difference. Unlike our present scheme, a formulation

with a density difference dependent term in the rigid projection equation is discussed by Patankar [20],

which has similarities to a scheme independently proposed by Glowinski et al. [10]. The density difference
dependent term, which includes inertia and gravity effect, is an additional source term in the rigid pro-

jection step (see Patankar [20]). Thus, there is an additional velocity correction in the particle domain.

The associated error is minimized in a variational formulation based method. This may improve its per-

formance relative to Eq. (24). For neutrally buoyant particles there is no density difference dependent

term in rigid projection, thus the advantage of the variational formulation based projection is reduced.

This is consistent with the observation of Glowinski et al. [10]. In our case, even if the fluid and particle

densities are not the same, this is not an issue since we do not have a density difference dependent term in

Eq. (22).

The numerical implementation will be presented in the following section.
4. Numerical implementation

The various steps involved in the numerical implementation of the algorithm above are described below.

We use a control volume method based on staggered grids [22]. Main control volumes (Fig. 1(a)) are used
for defining pressure and staggered control volumes are used for defining x (Fig. 1(b)), y (Fig. 1(c)) and z-

direction velocities, respectively. The arrows in Fig. 1 indicate the locations where the respective velocity

components are defined.

4.1. Computation of volume fraction u

The first step is to calculate the volume fraction u occupied by the solid particle in each of the main con-

trol volumes. This is accomplished by the following steps:

� The largest cuboid that can enclose the solid particle is identified. The main control volumes forming this

cuboid are marked.
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Fig. 1. The marked regions are: (a) main control volume (b) staggered control volume for u (x-direction) velocities and (c) staggered

control volume for v (y-direction) velocities. The arrows indicate the locations where the respective velocity components are defined.
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� Each of the marked main control volumes is subdivided into N number of finer volumes. The centre co-

ordinates of each of these finer volumes in a given main control volume are checked to see if they lie

within the boundaries of the solid particle. To illustrate this step further consider a disc; with radius r

and thickness h as shown in Fig. 2. Let rc be the position vector of the centre of the disc (xc, yc, zc),

rfv be the position vector of the centre of the finer volume (xfv, yfv, zfv) and n be the unit vector along

the central axis of the disc.

To mark the finer volume as either being within the solid boundary or not we check for the following

conditions.
(i) We define length, Lp as
Lp ¼ rfv � rc
� �

� n
�� ��; ð25Þ
where | | denotes the magnitude of the vector. Lp must satisfy the following condition if rfv is inside the

disc
Lp 6 r: ð26Þ
rc rfv

x

y

rfv-rc

n

h (xc, yc, zc)
(xfv, yfv, zfv)

r (xc, yc, zc)

Main control 
volume

(xfv, yfv, zfv)

Finer
volume

(a) (b)

Fig. 2. (a) Side view and (b) top view of a disc along with typical main and fine control volumes.
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(ii) (xfv, yfv, zfv) should also lie within the planes bounding the disc,
abs rfv � rc
� �

� n
� 	

6
h
2
: ð27Þ
If Eqs. (26) and (27) are satisfied; we mark the point to belong inside the disc. This scheme was used, e.g.,

in the calculations of the sedimentation of a disc, presented in Section 5. Similarly, other shapes were also
considered.

� Out of the N fine control volumes in a given main control volume, let Ns have their centers inside the

particle domain. The volume fraction u for this main control volume is given by
u ¼ Ns

N
: ð28Þ
In the above scheme, u is calculated by a discretization of the main control volume. The accuracy of the

approach is good when the fine control volume has an edge length that is small compared to the particle

size. We have used the fine control volume edge length that is 1/10 of the edge length of the main control

volume. The error relative to the exact value is less than 0.1%.

4.2. Solution of the fluid equations

As outlined in the section on computational algorithm, in the first fractional step, the fluid equations are

solved in the entire domain. The fluid equation (21) are discretized using the control volume approach:
Z
V

qnþ1û� qnun

Dt
þr � ðqnþ1ûûÞ � lr2ûþrpnþ1 � qnþ1g


 �
dV ¼ 0; ð29Þ

Z
V

qnþ1 � qn

Dt
þr � ðqnþ1ûÞ


 �
dV ¼ 0; ð30Þ
where V represents any control volume over which the integration is performed, and
q ¼ qfð1� uÞ þ qsu: ð31Þ
û is projected, in the next step, on to a rigid body motion in the particle domain. The volume fraction u
takes values between 0 and 1 for control volumes partially occupied by the solid particle, 1 for control vol-

umes fully occupied by the solid particle and zero otherwise. The volume fraction u is the same as function

H defined earlier with the difference that it is smeared on the edge of the particle due to discretization.

The continuity Eq. (30) appears to be for a compressible fluid. This is because of smearing of u at the

particle boundary. Beyond the particle boundary region, the velocity field is indeed divergence free.

The SIMPLER (semi-implicit method for pressure linked equations – revised) algorithm by Patankar
[22] is used for the solution of the discretized Eqs. (29) and (30). A fully implicit scheme is used for time

discretization and a power law scheme is used for discretizing the flux term (convection-diffusion fluxes).

A simple block correction based multigrid solver proposed by Sathyamurthy and Patankar [23] is used

to solve the resulting linear equations.
4.3. Rigid body projection of the velocity field in the particle domain

The next step is to project the velocity field û in the particle domain onto a rigid body motion ur. This is
accomplished by numerically solving for the translational velocity U and angular velocity xof the solid par-

ticle by using conservation of the angular and linear momentum given by Eqs. (32) and (33):



448 N. Sharma, N.A. Patankar / Journal of Computational Physics 205 (2005) 439–457
MU ¼
Z
P
uqsu dx; ð32Þ

Ipx ¼
Z
P
ur� qsu dx: ð33Þ
For the case of a sphere, the moment of inertia Ip, is a diagonal matrix with all the diagonal entries equal

irrespective of the orientation of the main co-ordinate axes. For other geometries like a disc or a box it is
not a diagonal matrix unless the principal axes of the object coincide with the main co-ordinate system. Ip
can be evaluated by computing the following integral over the particle domain.
Ip ¼
Z
P
qs r � rð ÞI� r� r½ � dx: ð34Þ
The velocity field ur in the particle domain is given by,
ur ¼ Uþ x� r: ð35Þ
Linear interpolation of velocity is done to numerically calculate U and x according to Eqs. (32) and (33).

4.4. Explicit update of the particle position (translation) and orientation

The final step involves updating the positions of the particles with knowledge of their translational and
angular velocities. Positions of the unit vectors along the three principal axes of a particle are updated by

using the following expression:
enþ1
i ¼ cos xj jDtð Þeni þ eni � x̂

� �
1� cos xj jDtð Þð Þx̂þ sin xj jDtð Þx̂� eni ; ð36Þ
where enþ1
i is the updated vector equation of unit vector i and i ranges from 1 to 3; x̂ is a unit vector along

the direction of the angular velocity x. Eq. (36) represents updating the orientation of the particle.
The translational position X, of a particle is updated by using the following explicit scheme:

Set Xn+1,0 = Xn

Do k = 1,K
X�nþ1;k ¼ Xnþ1;k�1 þ Un þUn�1

2

� �
Dt
K

� �
ð37Þ

Xnþ1;k ¼ X�nþ1;k þM�1 FðXnþ1;k�1Þ þ FðX�nþ1;kÞ
2

� �
ðDtÞ2

2K2
ð38Þ
enddo

Set Xn+1 = Xn+1,K, where F denotes the collision force acting on the particles to prevent them from pe-

netrating each other or the walls of the domain. Further details on the modeling of this force can be found
in Glowinski et al. [9].
5. Results and discussion

We determine the order of accuracy of the scheme and also validate the code. Convergence results for the

fluid–particle solver are presented first. Drag on a sphere as a function of the Reynolds number is compared

with experimental values. In the end, results for two spheres, many spheres and different geometries are
presented.
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5.1. Convergence results

In this sub-section we discuss results of the convergence test for the fluid and the fluid–particle solvers.

Convergence test for the fluid solver only (i.e., without the particle projection step) was done to verify that,

as expected, it is second-order with respect to the grid size for the problem with uniform fluid properties.
We considered a Poiseuille flow inside a channel of square cross-section. The fluid solver was found to be

second-order after plotting the error as a function of the grid size on a log-log plot.

Next we test the fluid–particle solver. We consider a single solid sphere of density 3 kg/m3 and diameter

0.625 m falling under gravity in a rectangular channel of cross-section 2 m · 2 m and height 8 m. The fluid

viscosity is 0.05 kg/ s and the density is 2 kg/m3. Simulations were carried out for increasing grid refinement.

A blocking ratio of 0.3125 was considered. The blocking ratio a is defined as the ratio of sphere diameter d

to edge length L of the cross-section of the channel
a ¼ d=L: ð39Þ

The terminal velocity of the sphere averaged over several time steps was compared with the results obtained

experimentally by McNown et al. [18]. Fig. 3 shows a plot of the terminal velocity obtained from numerical

simulations as a function of the grid size. In the limit of the grid size going to zero the value obtained (y

intercept value) is in reasonably good agreement with the experimental values (approximately 6% differ-

ence). Ideally this difference should be zero if the experimental error is zero. It should be noted that the

experimental value was read from a graph. The errors associated with the data, which were not given by
McNown et al. [18], could account for the 6% difference in the zero grid size limit.

Brown and Lawler [1] systematically analyzed the sphere drag data available to date. They proposed cor-

relations for the drag coefficient and the terminal velocity of a sphere falling in an infinite medium by sys-

tematically eliminating the wall effects in the experimental data. The wall effect is best represented in the

graph by Fidleris and Whitmore [6]. Using the correlations by Brown and Lawler [1] and the wall effect

given by Fidleris and Whitmore [6] we calculated the terminal velocity of the sphere, for the case considered

here, to be 1.2722 m/s compared to the zero grid size limit value of 1.2453 m/s in Fig. 3. The discrepancy

according to this comparison is 2%. A discrepancy of 5% with the experimental data is reported even with
the best available curve fits [1].
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Fig. 3. Plot of the terminal velocity as a function of grid size for a = 0.3125.
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The inset equation for the trend line shows that the algorithm is first-order with respect to the grid size.

The fluid solver was second-order for a constant property fluid. The reduction in the accuracy can be attrib-

uted to the simple linear interpolation used, in the rigid body projection step and, to account for the dif-

ferent material property (density) in the particle domain. It can also be caused by the explicit update of the

particle positions. The explicit scheme is first-order with respect to time stepping. This directly influences
the calculation of the convection term in the momentum equation, thus affecting the spatial accuracy.

Being first-order is not a limitation of the approach and as discussed before a second-order scheme for

the rigidity constraint can be envisaged analogous to the second-order pressure correction based fractional

step schemes for the incompressibility constraint.

The accuracy of the solution in the vicinity of the particle boundary depends on the interpolation

schemes used in the integrations in Eqs. (32) and (33). A better interpolation scheme, compared to the cur-

rently used linear interpolation, could improve the accuracy of the method.

The time spent in the computation of the volume fraction and the particle projection step is less than
1% of the total time spent for all the computations presented here. Thus, we see that this approach has

very little computational overhead for the calculation of particle motion compared to the fluid solver.

This is true even when the number of particles are increased as in the case of results presented in Section

5.3.

To further validate the code, different test cases were considered. The first test case involved checking the

drag on a sphere of radius 0.2 m settling at finite Reynolds numbers. A blocking ratio of 0.2 was taken. The

drag coefficient CD and the Reynolds number Re of the flow are given by,
Table

Comp

Reyno

41.8

40.4

33

32.4

11.7
CD ¼ 8F D

qfU
2pd2

; ð40Þ

Re ¼ qfUd
l

; ð41Þ
where U is the terminal velocity of the sphere, and the drag on the sphere, FD, is given by
F D ¼ p
6
d3 qs � qfð Þg: ð42Þ
The Reynolds number was varied by changing the fluid and particle densities, and the fluid viscosity. The

domain size is the same as that used in the previous case. Table 1 gives the values of drag coefficient CD as a
function of the Reynolds number Re obtained numerically and experimentally [18] for a blocking ratio of

0.2 and a grid size of 0.05.

For a blocking ratio of 0.3125 and the same grid size as that used in forming Table 1, the percentage

difference is approximately 11%. As stated above, in the limit of the grid size approaching zero, for a block-

ing ratio of 0.3125, the difference reduces to 6%. Similarly, the difference in Table 1 will decrease as the grid

size decreases further.
1

arison of the numerical and experimental [18] values of drag coefficients for varying Reynolds number at a blocking ratio of 0.2

lds number Drag coefficient Difference (%)

Numerical Experimental [18]

2.29 2 13.01

2.28 2 12.26

2.56 2.12 14.61

2.49 2.12 12.27

4.9 4.27 12.97
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We have further verified our rigid body projection scheme presented here but applied to steady state

Stokes flow around a periodic array of spheres. The computed drag coefficient was found to be in good

agreement with the analytical values within 2–5%. This is published elsewhere [24,25].

Mordant and Pinton [26] presented experimental data for the sedimentation of spheres. Their Reynolds

numbers were typically large and the blockage ratio was very small (�0.005), i.e., the wall effects were neg-
ligible. In fact their data agree with those compiled by Brown and Lawler [1]. Our minimum blockage ratio

was 0.2 below which it is computationally expensive for our current capability. However, Mordant and
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Fig. 4. Plot of the sphere velocity V versus time compared with the experimental result of Mordant and Pinton [26]. U is the terminal

velocity and s95 is the time it takes for the sphere to reach 95% of the terminal velocity. The finest grid case depicted in Fig. 3 is

considered here.

Fig. 5. Drafting, kissing and tumbling for two sedimenting spheres. (a) A 3D view. (b) A view in the diagonal plane in which tumbling

occurs. (c) A view in the other diagonal plane. The two-spheres at same times are identified by dashed boxes in figure (b).
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Pinton [26] data can be used to verify the transient behavior of sedimenting particles similar to the test done

by Dong et al. [5] for their spectral DLM code. This comparison is shown in Fig. 4. The agreement is found

to be good. Similar agreement was seen for all the sphere cases considered here.

In the remaining sections we will consider test cases to verify that the numerical scheme captures the key

qualitative aspects of some important flows.

5.2. Drafting, kissing and tumbling for two interacting spheres sedimenting in a Newtonian fluid

The case of two spheres falling in a Newtonian fluid was considered to further validate our method. An

important mechanism in this case is known as ‘‘drafting, kissing and tumbling’’: see Fortes et al. [7]. The

leading particle creates a wake of low pressure. The trailing particle is caught in its wake. It experiences

lower drag hence falls faster than the leading one. This phenomenon is called drafting. The increased speed

of the trailing particle impels a kissing contact with the leading particle. In kissing contact the two spheres
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Fig. 6. Plots for drafting, kissing and tumbling of spheres shown in Fig. 5. Comparison of: (a) the vertical positions of the spheres and

(b) the vertical velocities of the spheres with the results by Glowinski et al. [10].
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form a long body with the line of center along the stream. This state is unstable in a Newtonian fluid and as

a result the particles tumble under the influence of a couple which tries to bring them in broadside stable

state. The tumbling particles in a Newtonian fluid induce anisotropy of suspended particles since on the

average the line of centers between particles must be across the stream.

Fig. 5 shows numerical results for the case of two spheres of density 1.14 g/cm3 and radius 0.083 cm fall-
ing under gravity in a rectangular channel of cross section 1 cm · 1 cm and height 4 cm. A Newtonian fluid

of viscosity 0.01 g/cm s and density 1 g/cm3 is considered. The spheres were initially located at heights of 3.5

and 3.16 cm, respectively. This case is chosen to be identical to that presented by Glowinski et al. [10]. As

can be seen from the snap shots taken at times 0.05, 0.25, 0.35, 0.5 and 0.7 s the spheres exhibit the known

drafting, kissing and tumbling behavior. Tumbling occurs in one of the diagonal planes and the two spheres

move on either side of the centerline.

Figs. 6(a) and (b) show comparison, of the vertical positions and velocities of the spheres, with the

results of Glowinski et al. [10]. As expected the comparison is found to be good up to the kissing of
the particles. It is known that the tumbling phenomenon is the realization of an instability. Different

modes of tumbling have been reported in literature e.g. tumbling in a diagonal plane [10] or a plane par-

allel to the channel walls [4]. Particle positions with respect to the centerline after tumbling can also be

different e.g. both particles on same side of the centerline [10] or both particles on opposite side of the

centerline [4]. Thus the details of the motion after kissing depend on how the tumbling occurs; an exact

agreement in this part is not expected. The mode of tumbling depends on how the instability grows in a

particular numerical implementation. This is clear from Figs. 6(a) and (b), where our results are different

from those by Glowinski et al. [10] in the tumbling and later phases. In both cases the tumbling occurs in
the diagonal plane, however, in our case the particles move on either side of the centerline while in case

of Glowinski et al. [10] they move to the same side of the centerline. This leads to different velocity and

position plots. In the position plot we see that the lagging particle remains lagging in our case while in

case of Glowinski et al. [10] the lagging particle moves ahead (hence the cross-over in dotted lines in Fig.

6(b)).
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Fig. 7. Top view of the arrangement of the spheres in a single layer (all units are in meters).
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Our simulations are for a mesh size of 1/40 cm and a time step of 0.005 s. A collision scheme similar to

that by Glowinski et al. [9,10] was used to prevent particles from overlapping. The parameters in the col-

lision model per the definitions in Glowinski et al. [9] are e = 3 · 10�5 and q = 0.05 (note that q is not the

density) in CGS units. The mesh and time step of Glowinski et al. [10] is more refined; correspondingly they

are able to choose parameters such that the collision is more like those of hard spheres unlike ours.

5.3. Sedimentation of many spheres

Simulation was done for the sedimentation of 10 spheres to show that the scheme is capable of handling

many spheres. Fig. 7 shows a top view of the arrangement of the spheres in one layer.

Two such layers at heights 7.65 m and 7.05 m were considered. Spheres of density 5 kg/m3 and radius

0.2 m fall under gravity in a rectangular channel of cross section 2 m · 2 m and height 8 m. A Newtonian

fluid of viscosity 0.05 kg/m s and density 3 kg/m3 is considered.
Fig. 8(a) shows a three dimensional view of the sedimenting spheres and Fig. 8(b) shows the side views.

Snapshots were taken at times 0.25, 2.25, 4.25 and 6.25 s.
Fig. 8. (a) Three dimensional view of sedimenting spheres. (b) Side view of the sedimenting spheres.



Fig. 9. (a) A disc falling in a rectangular channel filled with a Newtonian fluid. (b) A plate falling in a rectangular channel filled with a

Newtonian fluid.
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As can be seen from Figs. 8(a) and (b) the sedimenting spheres exhibit instability similar to Rayleigh

Taylor instability. The inner spheres fall faster than the outer ones.

5.4. Different geometry results

Numerical tests were done for different geometries (other than a sphere) sedimenting in a Newtonian

fluid. These were carried out to demonstrate that the scheme is capable of handling irregular geometries

without significant increase in computational overhead. A disc and a plate were considered with initial long

side position. The initial long side position changed to broad side position during the fall. The channel

dimensions were the same as that used for the sphere case. The fluid properties were taken as: viscosity
0.05 kg/m s and density 1 kg/m3. The particle density was 2.725 kg/m3. Fig. 9(a) shows a disc of radius

0.3 m and thickness 0.2 m falling under gravity. As is evident from the snap shots of the fall at times

0.25, 2, 4 and 6 s, the initial unstable long side position changes to broad side. Fig. 9(b) shows a similar

trend for the case of a square plate of cross section 0.6 m · 0.6 m and thickness 0.2 m. In this case snap

shots were taken at 0.25, 1, 2 and 3 s.
6. Conclusion

We have presented a numerical scheme for the fast computation of rigid particulate flows. Convergence

tests showed the fluid–particle solver to be first-order. Code validation was done by comparing numerical

results with known experimental data. It is found that the method is effective in handling three-dimensional

regular and irregular geometries without significant additional computational overhead. The computa-

tional time required for the particle solver is less than 1% for the cases considered here.
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The proposed numerical method does not include additional equations of motion for the particle trans-

lational and angular velocities. The application to irregular shaped bodies is straightforward. The capabil-

ity for fast computation is rooted in a simple projection scheme for rigid motion (Eq. (24)). At the same

time the formulation lays a theoretical framework analogous to the Chorin [3] type fractional step schemes

for incompressible fluids. Improvement in the performance of this method is possible by developing higher
order time stepping schemes analogous to the pressure correction based fractional step schemes [16] for the

incompressibility constraint.

The ability to perform fast computations is suitable for the application of this method to turbulent par-

ticulate flows. This should be investigated especially in light of a method reported by Kajishima et al. [15]. It

is evident [20], that the method presented here, may be used to improve upon the earlier method by Kaji-

shima et al. [15]. Since the technique is not restricted to any constitutive model of the suspending fluid it

may also be used in large eddy simulations (LES) or Reynolds averaged Navier–Stokes (RANS) type

simulations.
The ease of handling irregular shaped bodies and the fast computation capability has enabled the appli-

cation of this technique in animation. Carlson et al. [2] have applied this technique to animate the interplay

between rigid bodies and fluid. They call it the rigid fluid method. They have reported several animations of

objects of different shapes.
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